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We introduce fragment formal concept analysis (FragFCA) to study complex relationships between fragments
in active compounds taking potency information into account. Fragment combinations that are unique to
active or highly potent compounds or that are shared by molecules having different or overlapping activity
profiles are systematically identified using chemically intuitive queries of varying complexity. The
methodology is applied to analyze fragment distributions in antagonists of seven G protein coupled receptor
targets and identify signature fragments. Pairs or triplets of molecular fragments are found to be most specific
for different activity profiles and compound potency levels. In addition, we demonstrate the ability of FragFCA
to identify selective hits in high-throughput screening data sets.

Introduction

Molecular fragments are an important source of activity
information and often used in compound and library design.1

For example, in fragment based drug design, predefined
molecular fragments are combined in order to generate inhibitors
for selected targets.1 For a number of target classes, attempts
have been made to identify so-called privileged substructures
that are associated with class-directed compound activity.2,3 For
G protein coupled receptor (GPCRa) ligands, it has been shown
that privileged substructures can often become target-specific
through chemical diversification with functional groups.2 For
kinases, analysis of the frequency of fragment occurrence in
different inhibitors has also identified sets of privileged sub-
structures.3

Fragment frequency analysis typically compares compound
sets in a pairwise manner or characterizes fragment distributions
in large data sets. For example, frequency analysis has been
used to identify combinations of molecular fragments that are
highly recurrent in synthetic compounds.4 Another study by
Sutherland et al. has identified individual fragments that occur
in ligands of related as well as unrelated targets on the basis of
frequency analysis.5

Recently, another approach has been introduced to prioritize
HTS hits based on the affinity of fragments they contain, as
determined by screening of fragment libraries.6 Similarly, a
method has been developed to identify fragments that distinguish
highly potent from moderately active compounds.7 Furthermore,
combinations of fragments that are characteristic of different
compound activity classes have also been isolated from ran-
domly generated molecular fragment populations.8

In addition to analyzing fragment distributions in active or
database compounds, molecular fragments have also become
focal points in the study of polypharmacology, in particular,
the generation of ligands that are active against multiple targets.9

Fragments that are recurrent in compounds with different
activities are relevant as building blocks for polypharmacological

ligand design and might also be used to better control compound
side effects.9 In this context, Sheridan has suggested an analysis
scheme based on common subgraph mining to extract fragments
that are associated with multiple ligand activities.10

We have carried out a fragment-based analysis of complex
structure-activity relationships between compounds with over-
lapping biological activities. To these ends, we have adopted
formal concept analysis (FCA), a machine learning and data
analysis technique originally introduced in information science,11

in order to identify fragment combinations that specifically occur
in compounds having different activity profiles or that are unique
to highly potent molecules. Fragment FCA (FragFCA) is an
interactive method that makes it possible to identify sets of
signature fragments using chemically intuitive queries of varying
complexity. Herein, we report FragFCA and its application to
a set of biogenic amine GPCR antagonists with overlapping,
yet distinct activity profiles and cathepsin L and S HTS data
sets.

Methods

Formal Concept Analysis. Formal concept analysis derives
ontologies from sets of objects and their properties (attributes).11

From these ontologies, subsets of objects with desired properties
are extracted. A formal context consists of all objects and the
associated attributes. In FragFCA, a formal context consists of
fragments and properties that indicate in which compounds
single fragments and combinations occur and how they are
related to activity (active vs inactive) or differences in potency.
The context can be represented as simple “occurs in” and “does
not occur in” relationships, as illustrated in Figure 1A. In this
example, the benzene fragment “occurs in” A, “occurs in” B
and “does not occur” in C, whereas the combination of the
benzene and the piperazine fragment “occurs in” A, “does not
occur in” B, and “does not occur in” C. FragFCA can be used
to extract increasingly complex relationships and all fragment
combinations they involve.

A concept is defined as a set of objects sharing a set of
attributes and vice versa. In FragFCA, objects are (combinations
of) molecular fragments and attributes include, for example,
compound activity or potency information. Concepts are
represented in concept lattices. A concept lattice reports activity
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annotations, fragments, and the relationships between them. The
lattice is formed by interconnected nodes, each representing a
particular concept, i.e., the relationship between selected proper-
ties and the fragments that share them (Figure 1A).

How is a concept lattice utilized? In order to extract fragment
combinations with desired properties, one first needs to identify
the corresponding node. The properties are written above the
nodes. If we follow the edges from each node toward the top
of the lattice, an associated set of properties is obtained, as
illustrated in Figure 1A. Then we select the node that is
associated with the desired properties, for example, potency
ranges of interest. From the selected node, the corresponding
fragment set is extracted (reported below the node). Additional
fragment combinations that share the desired but also other

properties can be identified by following the edges toward the
bottom of the lattice.

Scales are defined that preselect subsets of properties.
Focusing on subsets of properties (e.g., activity annotations) is
often crucial because concept lattices with too many properties
become difficult to navigate. For any given query, an appropriate
scale can be selected, for example, a potency scale. Queries of
increasing complexity can be assembled by combining different
scales. The subset of fragments that is selected on a particular
scale is forwarded to the next one, as illustrated in Figure 1B.
Thereby, fragment sets with multiple layers of user-defined
properties can be identified.

Our concepts and scales were implemented using the publicly
available ToscanaJ software.12 ToscanaJ makes it possible to
combine various scales and explore specific subsets of fragments
by interactive successive filtering through multiple scales.
Concept lattices were drawn using ToscanaJ export functions.

GPCR Antagonist Set. We have analyzed a previously
reported13 and publicly available (www.lifescienceinformatics.
uni-bonn.de) set of 267 biogenic amine GPCR antagonists, as
summarized in Table 1. Compounds in this set are active against
multiple receptors at different potency levels. A compound was
assigned to a class if it was active against the target receptor
with an IC50 value of 10 µM or lower. On the basis of this
threshold value, the 267 antagonists received a total of 687
activity assignments, as reported in Table 1.

Fragment Generation. We have applied a hierarchical
fragmentation scheme that divides compounds into rings, linkers,
and substituents (side chains).16 As a refinement of conventional
hierarchical fragmentation,16 we not only sample condensated
rings as fragments but also further divide them into nonfused
individual ring components. This fragmentation scheme was
implemented in the Molecular Operating Environment17 and is
illustrated in Figure 2. Fragments were generated from all GPCR
antagonists and combined. From the initial set of 701 unique
fragments, small fragments with fewer than 4 atoms and large
fragments with more than 20 atoms were removed, resulting in
a final set of 427 fragments.

Enumeration of Fragment Combinations. From these 427
GPCR fragments, a structural key-type fingerprint was generated
and calculated for each of the 267 antagonists. For each
compound, all individual fragments, pairs, triplets, and quadru-
plets were extracted from its fingerprint representation. A total
of 231 464 different combinations consisting of one to four
fragments were obtained. The enumeration of fragment com-
binations and FragFCA can be applied to any fragmentation
scheme and structural key-type fingerprint representation.

Activity Annotation of Fragment Combinations. Fragment
combinations were annotated with qualitative and quantitative
compound activity information. An antagonist was considered
active against a GPCR target if its IC50 was equal to or below
10 µM and inactive if it was above this value. Furthermore, we
distinguished between five different potency ranges for active

Figure 1. Scales and concept lattices. (A) The context (top) establishes
relationships between fragment combinations (objects) and activity
annotations (attributes). X indicates that a fragment has a specific
activity, e.g., the pyrimidine fragment is found in classes B and C but
not in A. The corresponding concept lattice is shown at the bottom.
The node representing the concept “B and C but not A” is colored
green. Following the green arrows to the top of the lattice yields the
attributes “B and C”. The pyrimidine fragment associated with this
concept is directly shown below the node in a red box. (B) Scales focus
on a subset of attributes. At the top, seven attributes corresponding to
seven compound activity classes are shown. At the bottom, concept
lattices of two scales are shown that capture two and three attributes,
respectively. Each scale provides information about all objects (i.e.,
fragment combinations, indicated by small black icons).

Table 1. GPCR Antagonist Seta

activity (e10 µM) activity annotations

dopamine D1 receptor antagonist 84
dopamine D2 receptor antagonist 216
dopamine D3 receptor antagonist 75
dopamine D4 receptor antagonist 93
serotonin 5HT1A receptor antagonist 95
serotonin 5HT2A receptor antagonist 32
adrenergic R1 receptor antagonist 92

a The 267 compounds in this set have multiple activities and represent
a total of 687 activity annotations.
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compounds: e1 nM, 1-10 nM, 10-100 nM, 100 nM to 1 µM,
and 1-10 µM. If a fragment combination was found in several
active compounds with different potency, it was annotated with
multiple potency ranges.

Definition of Scales. Global scales were used to qualitatively
compare multiple compound activity classes at different levels
of detail. In addition, for each class, three specific scales were
defined, a frequency, activity, and potency scale. The frequency
scale determines the number of active compounds that contain
a particular fragment combination. The activity scale distin-
guishes between fragment combinations that occur only in
active, active and inactive, or only inactive compounds. Potency
scales differentiate active compounds according to potency
ranges.

Nonredundant and Minimal Fragment Sets. From each
fragment set retrieved by a query, redundant fragment informa-
tion was omitted by removal of fragment combinations that
contained selected singletons, duplets, or triplets as subsets.
Thereby, nonredundant sets of fragment combinations were
obtained that covered the maximal number of compounds with
desired attributes. Furthermore, fingerprint overlap calculations
revealed minimal fragment sets covering selected molecules.

Cathepsin Data Sets. In addition, we have applied FragFCA
to a previously reported14 and publicly available (www.
lifescienceinformatics.uni-bonn.de) collection of inhibitors of
cathepsins, a thiol protease family, in order to identify selectivity
markers. The fragmentation scheme as described for GPCR
antagonists was applied. The extracted fragment combinations
were then used to identify selective cathepsin L inhibitors by
analyzing two HTS bioassay sets publicly available in Pub-
chem15 (cathepsin L, AID 460; cathepsin S, AID 501).

Results

Defining Scales. For large formal contexts such as the
fragment combinations and attributes used here, visualizing all
relationships in a single concept lattice is not feasible because
there are too many possible concepts. Therefore, scales are
defined that focus on subsets of attributes. Figure 3A illustrates
the hierarchical organization of global scales that are used to
distinguish between multiple compound classes, and Figure 3B
shows the more specific frequency, activity, and potency scales.
Combinations of scales define queries that are capable of
revealing different types of fragment-based relationships, as
demonstrated in the following. Owing to the presence of

overlapping activities and differences in potency, the GPCR
antagonists analyzed in this study present complicated struc-
ture-activity relationships. For our analysis of these compound
sets, four global GPCR scales were used and, in addition, five
specific scales for each of the seven GPCR targets, resulting in
a total number of 39 scales. In the following, we discuss the
results of six exemplary FragFCA queries having different levels
of complexity.

Fragments Characteristic of Dopamine and r1 Recep-
tor Antagonists. We first compared fragment distributions in
different activity classes. As an example, we determined
fragment combinations that were characteristic of dopamine
antagonists. The D1 activity scale was used to extract 41 049
fragment combinations that occurred in compounds active
against D1 (but not in inactive compounds). As reported in the
global GPCR scale in Figure 4A, 90% (37 098) of these
combinations only occurred in dopamine receptor antagonists,
3367 fragment combinations were shared with serotonin receptor
antagonists (but did not occur in R1 ligands), and 584 combina-
tions were shared by 5HT, D, and R1. As shown in Figure 4B,
the 3367 and 584 shared fragments were unevenly distributed
in serotonin receptor antagonists; they mostly occurred in
5HT1A, rather than 5HT2A antagonists. In addition, none of
the fragment combinations found in R1 ligands also occurred
in 5HT2A antagonists. We next analyzed the three fragment
subsets using the global D2 scale. Most fragment combinations
were found to be D2 specific. None of the fragments shared
with serotonin receptor ligands were specific for either D3 or
D4, and the 584 fragment combinations shared among all classes
on the global GPCR scale only occurred in D2 but not D3 or
D4 antagonists. By use of these scales, signature fragments and
combinations can be easily identified. An example is shown in
Figure 4C. The benzimidazol-2-one fragment in the center is
found in both D2 and serotonin receptor antagonists. However,
in combination with each of the surrounding fragments, it is
only present in D2 antagonists.

We next analyzed the distribution of the seven fragment pairs
in designated dopamine, serotonin, and R1 antagonists available
in the Molecular Drug Data Report (MDDR).18 Four of seven
individual combinations were only found in selective D1
antagonists. The three remaining pairs also occurred in other
antagonists. However, together they only occurred in two
serotonin receptor antagonists but all selective D1 antagonists.

The same type of FragFCA analysis was carried out for R1
antagonists in our GPCR ligand set. In contrast to dopamine
receptor antagonists, no R1-specific fragment combinations were
found. However, fragments with dual receptor specificity
existed. For example, a subset of 27 777 fragment combinations
was identified that only occurred in R1 and serotonin receptor
antagonists and that could be further reduced to 246 nonredun-
dant combinations (see Methods). The composition of this
nonredundant set is reported in Figure 5. As can be seen, the
set is dominated by fragment pairs (63%).

Fragments Distinguishing r1 and D2 from 5HT Recep-
tor Antagonists. Next we determined more complex fragment
relationships. Fragment combinations were extracted that were
shared by R1 and D2 antagonists but did not occur in serotonin
receptor antagonists. Therefore, the R1 and D2 activity scales
and the global GPCR scale were applied in a sequential manner.
A total of 42 265 fragment combinations were extracted that
were shared by R1 and D2 antagonists (and were not present in
compounds inactive against these two receptors); 9265 of these
combinations did not occur in serotonin receptor ligands. These
fragments were reduced to a nonredundant set consisting of

Figure 2. Fragmentation scheme. A model compound and the resulting
fragments are shown. The compound is subdivided into rings (black),
linkers (green), and side chains (red). Condensated rings are separated
into individual ring components that retain shared atoms and bonds.
Dashed lines in aliphatic rings (blue) indicate that these rings were
fused with an aromatic ring.
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98 fragment combinations. In a database search, these fragment
combinations correctly retrieved all 18 compounds having the
corresponding activity profile (i.e., active against D2 and R1
but not 5HT). Moreover, the minimal signature set describing
all 18 compounds consisted of only two fragment pairs covering
12 and 14 compounds, respectively, as shown in Figure 6.

Both fragment combinations depicted in Figure 6 represent
overlapping fragments (due to a shared phenyl moiety) and thus
appear to contain redundant information. However, fragment
combinations extracted using FragFCA identify compounds
containing overlapping or nonoverlapping fragments, as also
shown in Figure 6. This versatility permits the identification of
structurally diverse selective compounds.

Fragments Specific for 5HT1A Receptor Antagonists. We
also attempted to find a minimal set of fragment combinations

that distinguish 5HT1A from dopamine and R1 antagonists.
First, the activity scale specific for 5HT1A was used and
fragment combinations were selected that did not occur in
5HT1A inactive compounds. This query was then further refined
using the GPCR global scale. Only 3311 combinations were
shared between serotonin and dopamine antagonists but not
present in R1 ligands. Most fragment combinations were shared
among all three classes or were specific for serotonin receptor
antagonists (35% each). A total of 37 641 fragment combinations
specific for 5HT1A were selected and reduced to a nonredundant
set of 199 unique fragment combinations. Figure 7A reports
the composition of this nonredundant set. Again, fragment pairs
and triplets constituted the major part (80%) of all specific
combinations.

Figure 3. Organization of scales. (A) The tree structure (top) reflects the hierarchical organization of global scales. Each node and its children
(bold) correspond to a particular scale (with attributes provided by the children). At the bottom, the different scales are shown. Parents in the tree
and corresponding scales are color-coded. (B) Three types of specific scales are defined for each target. The potency scales account for different
potency levels. The frequency scales report the number of molecules a fragment combination occurs in. The activity scales distinguish between
fragment combinations that are only present in active compounds and fragment combinations that also occur in inactive molecules.
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The minimal set of fragment combinations determined from
fingerprint overlap in selected compounds consisted of two
fragment pairs and one fragment triplet, shown in Figure 7B.
This minimal set identified all nine compounds in the database
having the corresponding activity profile (i.e., active against
5HT1A but not dopamine or adrenergic receptors). Representa-
tive antagonists are also shown in Figure 7B. The first fragment
pair (butaldehyde and cationic phenylpiperazine) described seven
of the nine compounds. We further analyzed this pair with
respect to the selectivity of its individual fragments. As reported
in Figure 7C, the individual fragments were not specific for

5HT1A antagonists. By contrast, the combination of these two
fragments was specific.

Fragments in Potent 5HT1A and D4 Receptor Antago-
nists. The 5HT1A query discussed above was further refined
using the 5HT1A potency scale to initially extract 17 225
fragment combinations occurring in compounds with e100 nM
potency. The GPCR antagonist set contained six specific 5HT1A
antagonists at this potency level. We then used the 5HT1A
frequency scale to select 3542 fragment combinations that
occurred in all of these compounds. The nonredundant set
contained 32 fragment combinations, 27 of which were pairs
or triplets. Thus, adding two scales to the predefined 5HT1A
query made it possible to identify fragment combinations that
were specific for a subset of potent 5HT1A antagonists.

In order to search for signature fragments of highly potent
D4 antagonists, we directly applied the D4 potency scale to
extract 35 593 fragment combinations occurring only in D4
antagonists with e100 nM potency. We further refined this
query using a D4 high potency scale that selected 588
combinations specific for the highest potency range (e1 nM).
The reduced set consisted of nine fragment combinations
depicted in Figure 8. These fragments identified four of six D4

Figure 4. Fragment combinations specific for D1 antagonists. (A)
Distribution of D1 specific fragments selected from the D1 activity
scale (left) and further analyzed using the global GPCR scale (right).
Small nodes indicate that no fragment combinations are directly
associated with the corresponding concept. Nodes at the bottom of the
concept lattice represent concepts that combine several properties. (B)
Distribution of the green and red subsets (left) among serotonin receptor
antagonists (right). (C) The encircled fragment in the center is found
as a singleton in both D2 and serotonin antagonists. By contrast, the
combination with each of the surrounding fragments (yielding pairs)
only occurs in D2 antagonists.

Figure 5. Fragment combinations in R1 and serotonin antagonists.
The chart reports the distribution of 246 nonredundant combinations.
63% of all combinations are pairs.

Figure 6. Fragment combinations specific for R1 and D2 against 5HT
antagonists. The minimal set of fragment combinations describing all
desired compounds is shown at the top. For each fragment pair, the
number of molecules it identifies is reported. At the bottom, three
representative antagonists are shown that are detected by these frag-
ments.
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antagonists with e1 nM potency present in the database and
detected no other compounds. The results for all GPCR
selectivity queries are summarized in Table 2.

Prediction of Selective HTS Hits Using FragFCA. We also
utilized FragFCA for mining of HTS data. Therefore, we
extracted 533 fragment combinations from a literature set of
cathepsin inhibitors that indicated selectivity of active com-
pounds for cathepsin L compared to cathepsin S. These
fragments were then used to analyze a publicly available high-
throughput screen for inhibitors of cathepsin L. This set

contained a total of 41 active compounds, none of which was
also part of the literature set. Because the same compound data
set was also screened against cathepsin S, 36 of the 41 active
compounds were confirmed to be selective for cathepsin L.
Thirteen of these 36 selective compounds were identified using
our fragment combinations. By contrast, none of the five
inhibitors active against both cathepsin S and L matched any
of these fragment combinations. As illustrated in Figure 9, the
13 selective inhibitors identified by FragFCA were structurally
diverse.

Discussion

Formal concept analysis is capable of identifying specific
patterns within a given context of objects and associated
attributes. We introduce the FragFCA approach that can be
applied to any fragment scheme and structural key-type
fingerprint representations. FragFCA makes it possible to
compare multiple compound activity classes and to study
complex fragment-based relationships between active com-
pounds. We have developed two types of scales, global and
class-specific scales, which represent very versatile and intuitive
tools to build highly specific and increasingly complex fragment
queries. Global scales enable the comparison of biological
activity profiles at different levels of detail, while specific scales
provide information, for example, about the potency character-
istics or frequency of occurrence of individual fragment

Figure 7. Fragment combinations specific for 5HT1A antagonists. (A)
Fragment distribution in the nonredundant subset. (B) The minimal
set of fragment combinations identifying all 5HT1A antagonists is
shown at the top. At the bottom, four representative 5HT1A antagonists
are shown. (C) Individual fragments of a pair. The number of 5HT1A
antagonists containing each individual fragment and their combination
is reported together with the number of antagonists with different
activities. Percentages in parentheses report the fraction of 5HT1A
antagonists in the database. The right column reports the fraction of
desired compounds in the set identified by the individual fragments
and their combination.

Figure 8. Fragments specific for highly potent D4 antagonists. The
minimal set of nine fragment combinations is shown together with four
highly potent D4 antagonists detected by this set.

Table 2. Summary of GPCR Antagonist Queriesa

query
reduced key

set size
total number

of compounds
number of

recovered compounds

R1 and D2 vs 5HT 98 18 18
5HT1A vs D and R1 199 9 9
potent selective 5HT1A 32 6 6
potent selective D4 9 6 4

a For each selectivity query, reported are the number of reduced fragment
combinations, the total number of available selective compounds, and the
number of correctly identified compounds applying the query.
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combinations. The utility of FragFCA goes well beyond
fragment frequency analysis that has been applied in a number
of previous studies.2,4,5

FragFCA is in principle applicable to fragments derived by
any fragmentation scheme. Here, we have applied hierarchical
fragmentation, which is most commonly used. For the generation
of global scales, biological activity has been defined in an “all
or nothing” manner, i.e., through application of a 10 µM
threshold level. Furthermore, fragment combinations associated
with active compounds were not permitted to occur in any
inactive molecules. However, for FragFCA, other criteria can
be readily applied. For example, by combination of potency
and frequency scales, queries with varying threshold levels for
activity and/or fragment occurrence can be designed. Here,
FragFCA has been applied to sets of approximately 300 active
compounds but FragFCA is in general not limited by database
size.

A major goal of FragFCA is the identification of molecular
fragments and fragment combinations that are specific for
compound activity classes or subsets of active compounds at
different potency levels. We have shown that specific fragment
combinations can be reduced to nonredundant and minimal sets
that are highly descriptive. Such fragment combinations can be
applied to differentiate compound classes from each other or
to search for active and also highly potent compounds via simple
substructure queries. It is conceivable that specific fragment
combinations identified by FragFCA might also aid in fragment-
based ligand or focused library design.

The GPCR antagonist set analyzed herein represents com-
plicated structure-activity relationships because test compounds
have overlapping activity profiles. On the basis of a conventional
hierarchical fragmentation scheme, we have been able to identify
signature fragments for a variety of GPCR antagonist subsets
with different characteristics. A major finding has been that most
GPCR antagonist-specific information is contained in fragment
pairs and triplets rather than individual fragments. These findings
indicate that small fragment combinations are most relevant for
distinguishing between different activity profiles or compound
potency levels. We also applied the FragFCA approach to
another target family, cathepsins, and identified fragment

combinations capable of extracting selective cathepsin L inhibi-
tors from HTS data.

Conclusions
Fragment formal concept analysis is based on principles from

information science and designed to systematically identify
signature fragments that are specific for different compound
classes or potent molecules. FragFCA permits fragment search-
ing in a flexible and interactive manner using chemically
intuitive scales. Combination of scales results in queries of
varying complexity. FragFCA analysis has successfully identi-
fied fragment combinations specific for subsets of GPCR
antagonists with different activity profiles and potency and for
cathepsin L inhibitors in screening data sets. Signature fragment
combinations have identified structurally diverse molecules
having similar activity. In general, fragment pairs and triplets
were found to capture most activity-specific information.
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Figure 9. Selective cathepsin L inhibitors. Shown are examples of
inhibitors that are selective for cathepsin L over cathepsin S. These
structurally diverse inhibitors were identified in a HTS data set using
FragFCA.
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